Hybrid Clustering Algorithm Based on Pso with the Multidimensional Asynchronism and Stochastic Disturbance Method

نویسنده

  • JUNYAN CHEN
چکیده

It is well known that solutions of k-means algorithm depend on the initialization of cluster centers and the final solution converges to local minima. In this paper, we introduce a clustering approach that combines ideas from modified particle swarm optimization (PSO) and k-means. The potential benefits of this technique are investigated by incorporating the multidimensional asynchronism and stochastic disturbance method to the velocity in the particle swarm optimizer to create new modifications of the clustering for kmeans algorithmic model, which could keep populations diversity and ability of search global optimum as well as solve the problem of the curse of dimensionality. The simulation results of web log dataset show that the proposed algorithm, compared with the five previous developed PSO techniques, provides enhanced performance and maintains more diversity in the swarm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Clustering Multidimensional Data with PSO based Algorithm

Data clustering is a recognized data analysis method in data mining whereas K-Means is the well known partitional clustering method, possessing pleasant features. We observed that, K-Means and other partitional clustering techniques suffer from several limitations such as initial cluster centre selection, preknowledge of number of clusters, dead unit problem, multiple cluster membership and pre...

متن کامل

Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm

One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...

متن کامل

GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION

Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012